Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification

نویسندگان

  • Rohit Tripathy
  • Ilias Bilionis
چکیده

State-of-the-art computer codes for simulating real physical systems are often characterized by vast number of input parameters. Performing uncertainty quantification (UQ) tasks with Monte Carlo (MC) methods is almost always infeasible because of the need to perform hundreds of thousands or even millions of forward model evaluations in order to obtain convergent statistics. One, thus, tries to construct a cheap-to-evaluate surrogate model to replace the forward model solver. For systems with large numbers of input parameters, one has to deal with the curse of dimensionality the exponential increase in the volume of the input space, as the number of parameters increases linearly. Suitable dimensionality reduction techniques are used to address the curse of dimensionality. A popular class of dimensionality reduction methods are those that attempt to recover a low dimensional representation of the high dimensional feature space. However, such methods often tend to overestimate the intrinsic dimensionality of the input feature space. In this work, we demonstrate the use of deep neural networks (DNN) to construct surrogate models for numerical simulators. We parameterize the structure of the DNN in a manner that lends the DNN surrogate the interpretation of recovering a low dimensional nonlinear 1 ar X iv :1 80 2. 00 85 0v 1 [ ph ys ic s. co m pph ] 2 F eb 2 01 8 manifold. The model response is a parameterized nonlinear function of the low dimensional projections of the input. We think of this low dimensional manifold as a nonlinear generalization of the notion of the active subspace. Our approach is demonstrated with a problem on uncertainty propagation in a stochastic elliptic partial differential equation (SPDE) with uncertain diffusion coefficient. We deviate from traditional formulations of the SPDE problem by not imposing a specific covariance structure on the random diffusion coefficient. Instead we attempt to solve a more challenging problem of learning a map between an arbitrary snapshot of the diffusion field and the response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification

We are interested in the development of surrogate models for uncertainty quantification and propagation in problems governed by stochastic PDEs using a deep convolutional encoder-decoder network in a similar fashion to approaches considered in deep learning for image-to-image regression tasks. Since normal neural networks are data intensive and cannot provide predictive uncertainty, we propose ...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery

The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد

Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.00850  شماره 

صفحات  -

تاریخ انتشار 2018